QUIZ 20 SOLUTIONS: LESSON 27 NOVEMBER 7, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

Let R be the rectangle described by $-1 \leq x \leq 1,0 \leq y \leq 2$.

1. [3 pts] Set up the integral that denotes the volume under $f(x, y)=2 x y^{2}$ over the region R.

Solution: Any of

$$
\int_{-1}^{1} \int_{0}^{2} 2 x y^{2} d y d x, \quad \int_{0}^{2} \int_{-1}^{1} 2 x y^{2} d x d y, \quad \iint_{R} 2 x^{2} y d A
$$

are acceptable.
2. [7 pts] Evaluate the integral from \# 1 .

Solution:

$$
\begin{aligned}
\int_{-1}^{1} \int_{0}^{2} 2 x y^{2} d y d x & =\left.\int_{-1}^{1} \frac{2}{3} x y^{3}\right|_{y=0} ^{y=2} d x \\
& =\int_{-1}^{1}\left[\frac{2}{3} x(2)^{3}-\frac{2}{3} x(0)^{3}\right] d x \\
& =\int_{-1}^{1}\left[\frac{16}{3} x\right] d x \\
& =\left.\frac{16}{6} x^{2}\right|_{-1} ^{1} \\
& =\frac{8}{3}(1)^{2}-\frac{8}{3}(-1)^{2}=0 \\
& =\int_{0}^{2}\left[(1)^{2} y^{2}-(-1)^{2} y^{2}\right] d y \\
\int_{0}^{2} \int_{-1}^{1} 2 x y^{2} d x d y & =\left.\int_{0}^{2} x^{2} y^{2}\right|_{-1} ^{1} d y \\
& =\int_{0}^{2} 0 d y=0
\end{aligned}
$$

